前面文章我们已经安装配置了 ElasticSearch 的集群,本文我们将来使用 Metricbeat 对 Kubernetes 集群进行监控。Metricbeat 是一个服务器上的轻量级采集器,用于定期收集主机和服务的监控指标。这也是我们构建 Kubernetes 全栈监控的第一个部分。
Metribeat 默认采集系统的指标,但是也包含了大量的其他模块来采集有关服务的指标,比如 Nginx、Kafka、MySQL、Redis 等等,支持的完整模块可以在 Elastic 官方网站上查看到 https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-modules.html。
kube-state-metrics
首先,我们需要安装 kube-state-metrics,这个组件是一个监听 Kubernetes API 的服务,可以暴露每个资源对象状态的相关指标数据。
要安装 kube-state-metrics 也非常简单,在对应的 GitHub 仓库下就有对应的安装资源清单文件:
$ git clone https://github.com/kubernetes/kube-state-metrics.git
$ cd kube-state-metrics
# 执行安装命令
$ kubectl apply -f examples/standard/
clusterrolebinding.rbac.authorization.k8s.io/kube-state-metrics configured
clusterrole.rbac.authorization.k8s.io/kube-state-metrics configured
deployment.apps/kube-state-metrics configured
serviceaccount/kube-state-metrics configured
service/kube-state-metrics configured
$ kubectl get pods -n kube-system -l app.kubernetes.io/name=kube-state-metrics
NAME READY STATUS RESTARTS AGE
kube-state-metrics-6d7449fc78-mgf4f 1/1 Running 0 88s
当 Pod 变成 Running 状态后证明安装成功。
Metricbeat
由于我们需要监控所有的节点,所以我们需要使用一个 DaemonSet 控制器来安装 Metricbeat。
首先,使用一个 ConfigMap 来配置 Metricbeat,然后通过 Volume 将该对象挂载到容器中的 /etc/metricbeat.yaml
中去。配置文件中包含了 ElasticSearch 的地址、用户名和密码,以及 Kibana 配置,我们要启用的模块与抓取频率等信息。
# metricbeat.settings.configmap.yml
---
apiVersion: v1
kind: ConfigMap
metadata:
namespace: elastic
name: metricbeat-config
labels:
app: metricbeat
data:
metricbeat.yml: |-
# 模块配置
metricbeat.modules:
- module: system
period: ${PERIOD}
metricsets: ["cpu", "load", "memory", "network", "process", "process_summary", "core", "diskio", "socket"]
processes: ['.*']
process.include_top_n:
by_cpu: 5 # 根据 CPU 计算的前5个进程
by_memory: 5 # 根据内存计算的前5个进程
- module: system
period: ${PERIOD}
metricsets: ["filesystem", "fsstat"]
processors:
- drop_event.when.regexp:
system.filesystem.mount_point: '^/(sys|cgroup|proc|dev|etc|host|lib)($|/)'
- module: docker
period: ${PERIOD}
hosts: ["unix:///var/run/docker.sock"]
metricsets: ["container", "cpu", "diskio", "healthcheck", "info", "memory", "network"]
- module: kubernetes # 抓取 kubelet 监控指标
period: ${PERIOD}
node: ${NODE_NAME}
hosts: ["https://${NODE_NAME}:10250"]
metricsets: ["node", "system", "pod", "container", "volume"]
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
ssl.verification_mode: "none"
- module: kubernetes # 抓取 kube-state-metrics 数据
period: ${PERIOD}
node: ${NODE_NAME}
metricsets: ["state_node", "state_deployment", "state_replicaset", "state_pod", "state_container"]
hosts: ["kube-state-metrics.kube-system.svc.cluster.local:8080"]
# 根据 k8s deployment 配置具体的服务模块
metricbeat.autodiscover:
providers:
- type: kubernetes
node: ${NODE_NAME}
templates:
- condition.equals:
kubernetes.labels.app: mongo
config:
- module: mongodb
period: ${PERIOD}
hosts: ["mongo.elastic:27017"]
metricsets: ["dbstats", "status", "collstats", "metrics", "replstatus"]
# ElasticSearch 连接配置
output.elasticsearch:
hosts: ['${ELASTICSEARCH_HOST:elasticsearch}:${ELASTICSEARCH_PORT:9200}']
username: ${ELASTICSEARCH_USERNAME}
password: ${ELASTICSEARCH_PASSWORD}
# 连接到 Kibana
setup.kibana:
host: '${KIBANA_HOST:kibana}:${KIBANA_PORT:5601}'
# 导入已经存在的 Dashboard
setup.dashboards.enabled: true
# 配置 indice 生命周期
setup.ilm:
policy_file: /etc/indice-lifecycle.json
---
ElasticSearch 的 indice 生命周期表示一组规则,可以根据 indice 的大小或者时长应用到你的 indice 上。比如可以每天或者每次超过 1GB 大小的时候对 indice 进行轮转,我们也可以根据规则配置不同的阶段。由于监控会产生大量的数据,很有可能一天就超过几十G的数据,所以为了防止大量的数据存储,我们可以利用 indice 的生命周期来配置数据保留,这个在 Prometheus 中也有类似的操作。
如下所示的文件中,我们配置成每天或每次超过5GB的时候就对 indice 进行轮转,并删除所有超过10天的 indice 文件,我们这里只保留10天监控数据完全足够了。
# metricbeat.indice-lifecycle.configmap.yml
---
apiVersion: v1
kind: ConfigMap
metadata:
namespace: elastic
name: metricbeat-indice-lifecycle
labels:
app: metricbeat
data:
indice-lifecycle.json: |-
{
"policy": {
"phases": {
"hot": {
"actions": {
"rollover": {
"max_size": "5GB" ,
"max_age": "1d"
}
}
},
"delete": {
"min_age": "10d",
"actions": {
"delete": {}
}
}
}
}
}
---
接下来就可以来编写 Metricbeat 的 DaemonSet 资源对象清单,如下所示:
# metricbeat.daemonset.yml
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
namespace: elastic
name: metricbeat
labels:
app: metricbeat
spec:
selector:
matchLabels:
app: metricbeat
template:
metadata:
labels:
app: metricbeat
spec:
serviceAccountName: metricbeat
terminationGracePeriodSeconds: 30
hostNetwork: true
dnsPolicy: ClusterFirstWithHostNet
containers:
- name: metricbeat
image: docker.elastic.co/beats/metricbeat:7.8.0
args: [
"-c", "/etc/metricbeat.yml",
"-e", "-system.hostfs=/hostfs"
]
env:
- name: ELASTICSEARCH_HOST
value: elasticsearch-client.elastic.svc.cluster.local
- name: ELASTICSEARCH_PORT
value: "9200"
- name: ELASTICSEARCH_USERNAME
value: elastic
- name: ELASTICSEARCH_PASSWORD
valueFrom:
secretKeyRef:
name: elasticsearch-pw-elastic
key: password
- name: KIBANA_HOST
value: kibana.elastic.svc.cluster.local
- name: KIBANA_PORT
value: "5601"
- name: NODE_NAME
valueFrom:
fieldRef:
fieldPath: spec.nodeName
- name: PERIOD
value: "10s"
securityContext:
runAsUser: 0
resources:
limits:
memory: 200Mi
requests:
cpu: 100m
memory: 100Mi
volumeMounts:
- name: config
mountPath: /etc/metricbeat.yml
readOnly: true
subPath: metricbeat.yml
- name: indice-lifecycle
mountPath: /etc/indice-lifecycle.json
readOnly: true
subPath: indice-lifecycle.json
- name: dockersock
mountPath: /var/run/docker.sock
- name: proc
mountPath: /hostfs/proc
readOnly: true
- name: cgroup
mountPath: /hostfs/sys/fs/cgroup
readOnly: true
volumes:
- name: proc
hostPath:
path: /proc
- name: cgroup
hostPath:
path: /sys/fs/cgroup
- name: dockersock
hostPath:
path: /var/run/docker.sock
- name: config
configMap:
defaultMode: 0600
name: metricbeat-config
- name: indice-lifecycle
configMap:
defaultMode: 0600
name: metricbeat-indice-lifecycle
- name: data
hostPath:
path: /var/lib/metricbeat-data
type: DirectoryOrCreate
---
需要注意的将上面的两个 ConfigMap 挂载到容器中去,由于需要 Metricbeat 获取宿主机的相关信息,所以我们这里也挂载了一些宿主机的文件到容器中去,比如 proc
目录,cgroup
目录以及 dockersock
文件。
由于 Metricbeat 需要去获取 Kubernetes 集群的资源对象信息,所以同样需要对应的 RBAC 权限声明,由于是全局作用域的,所以这里我们使用 ClusterRole 进行声明:
# metricbeat.permissions.yml
---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
name: metricbeat
subjects:
- kind: ServiceAccount
name: metricbeat
namespace: elastic
roleRef:
kind: ClusterRole
name: metricbeat
apiGroup: rbac.authorization.k8s.io
---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRole
metadata:
name: metricbeat
labels:
app: metricbeat
rules:
- apiGroups: [""]
resources:
- nodes
- namespaces
- events
- pods
verbs: ["get", "list", "watch"]
- apiGroups: ["extensions"]
resources:
- replicasets
verbs: ["get", "list", "watch"]
- apiGroups: ["apps"]
resources:
- statefulsets
- deployments
- replicasets
verbs: ["get", "list", "watch"]
- apiGroups:
- ""
resources:
- nodes/stats
verbs:
- get
---
apiVersion: v1
kind: ServiceAccount
metadata:
namespace: elastic
name: metricbeat
labels:
app: metricbeat
---
直接创建上面的几个资源对象即可:
$ kubectl apply -f metricbeat.settings.configmap.yml
-f metricbeat.indice-lifecycle.configmap.yml
-f metricbeat.daemonset.yml
-f metricbeat.permissions.yml
configmap/metricbeat-config configured
configmap/metricbeat-indice-lifecycle configured
daemonset.extensions/metricbeat created
clusterrolebinding.rbac.authorization.k8s.io/metricbeat created
clusterrole.rbac.authorization.k8s.io/metricbeat created
serviceaccount/metricbeat created
$ kubectl get pods -n elastic -l app=metricbeat
NAME READY STATUS RESTARTS AGE
metricbeat-2gstq 1/1 Running 0 18m
metricbeat-99rdb 1/1 Running 0 18m
metricbeat-9bb27 1/1 Running 0 18m
metricbeat-cgbrg 1/1 Running 0 18m
metricbeat-l2csd 1/1 Running 0 18m
metricbeat-lsrgv 1/1 Running 0 18m
当 Metricbeat 的 Pod 变成 Running 状态后,正常我们就可以在 Kibana 中去查看对应的监控信息了。
在 Kibana 左侧页面 Observability → Metrics 进入指标监控页面,正常就可以看到一些监控数据了:
也可以根据自己的需求进行筛选,比如我们可以按照 Kubernetes Namespace 进行分组作为视图查看监控信息:
由于我们在配置文件中设置了属性 setup.dashboards.enabled=true,所以 Kibana 会导入预先已经存在的一些 Dashboard。我们可以在左侧菜单进入 Kibana → Dashboard 页面,我们会看到一个大约有 50 个 Metricbeat 的 Dashboard 列表,我们可以根据需要筛选 Dashboard,比如我们要查看集群节点的信息,可以查看 [Metricbeat Kubernetes] Overview ECS
这个 Dashboard:
我们还单独启用了 mongodb 模块,我们可以使用 [Metricbeat MongoDB] Overview ECS 这个 Dashboard 来查看监控信息:
我们还启用了 docker 这个模块,也可以使用 [Metricbeat Docker] Overview ECS 这个 Dashboard 来查看监控信息:
到这里我们就完成了使用 Metricbeat 来监控 Kubernetes 集群信息,在下文我们再来学习如何使用 Filebeat 来收集日志以监控 Kubernetes 集群。
扫描下面的二维码关注我们的微信公众帐号,在微信公众帐号中回复◉加群◉即可加入到我们的 kubernetes 讨论群里面共同学习。
文章来源于互联网:使用 Elastic 技术栈构建 K8S 全栈监控(2/4)